
GLOBAL OPTIMIZATION OF STATISTICAL FUNCTIONS WITH SIMULATED ANNEALING *

William L. Goffe

University of North Carolina at Wilmington, Wilmington, NC 28403

Gary D. Ferrier

Southern Methodist University, Dallas, TX 75275

 John Rogers

North Texas State, Denton TX 76203

May, 1993

Many statistical methods rely on numerical optimization to estimate a model’s parameters. Unfortunately,
conventional algorithms sometimes fail. Even when they do converge, there is no assurance that they have found the
global, rather than a local, optimum. We test a new optimization algorithm, simulated annealing, on four
econometric problems and compare it to three common conventional algorithms. Not only can simulated annealing
find the global optimum, it is also less likely to fail on difficult functions because it is a very robust algorithm. The
promise of simulated annealing is demonstrated on the four econometric problems.

The computational work for this paper was performed at the University of Texas Center for High Performance
Computing.

 * We would like to thank, without implicating, Hans Amman, Gary Barinshtein, David Belsley, T. Randolph Beard,
Herman Bierens, Michael Booty, David Goldberg, Stan Kerr, David Levy, Essie Maasoumi, Daniel McCaffrey,
Richard Quandt and Michael Veall for helpful suggestions and comments on previous drafts. Two anonymous
referees provided many valuable suggestions. Albert Boulanger was very helpful with the literature survey. For
computational help, we would like to thank Art Belmonte and Ava Horvath of IMSL. Sarah Barron, Jan Byrd,
Robert Harkness, Luther Keeler, John Respess and Spiros Vellas of the University of Texas Center for High
Performance Computing also provided invaluable help.

1

I. INTRODUCTION

Many econometric methods, such as nonlinear least squares, the generalized method of moments, and the

maximum likelihood method, rely upon optimization to estimate model parameters. Not only do these methods lay

the theoretical foundation for many estimators, they are often used to numerically estimate models. Unfortunately,

this may be difficult because these algorithms are sometimes touchy and may fail. For the maximum likelihood

method, Cramer (1986, p. 77) lists a number of "unpleasant possibilities": the algorithm may not converge in a

reasonable number of steps, it may head toward infinitely large parameter values, or even loop through the same

point time and again. Also, the algorithm may have difficulty with ridges and plateaus. When faced with such

difficulties, the researcher is often reduced to trying different starting values [Cramer, (1986, p.72) and Finch et al.

(1989)]. Finally, even if the algorithm converges, there is no assurance that it will have converged to a global, rather

than a local, optimum since conventional algorithms cannot distinguish between the two. In sum, there is a poor

match between the power of these methods and the numerical algorithms used to implement them.

A new and very different optimization algorithm, simulated annealing, potentially improves this match. It

explores the function’s entire surface and tries to optimize the function while moving both uphill and downhill.

Thus, it is largely independent of the starting values, often a critical input in conventional algorithms. Further, it

can escape from local optima and go on to find the global optimum by the uphill and downhill moves. Simulated

annealing also makes less stringent assumptions regarding the function than do conventional algorithms (it need not

even be continuous). Because of the relaxed assumptions, it can more easily deal with functions that have ridges

and plateaus. Finally, it can optimize functions that are not defined for some parameter values.

This paper first compares the Corana et al. (1987) implementation of simulated annealing to conventional

algorithms on four econometric models. Thus, these results may help guide other researchers. The first model is

an example from the literature with multiple minima [Judge et al. (1985, pp. 956-7)], and the second is a rational

expectations exchange rate model. The third model is an efficiency study of the banking industry using a translog

cost frontier system and the fourth fits a neural network to a chaotic time series. These models vary greatly in size.

The Judge model has only two parameters, the exchange rate model has 14, the neural network has 35, and the cost

study has 62. All three multivariable optimization algorithms in the IMSL library represent conventional algorithms.

Since they are sensitive to starting values, 100 different sets of them are used in all cases.

2

This paper then introduces extensions to the Corana algorithm. One modification checks that the global

optimum is indeed achieved, while another allows the researcher to restrict optimization to a subset of the parameter

space (this can be very useful for understanding the function). The third extension allows the researcher to determine

a critical initial parameter for the algorithm, while the final one directs the selection of parameters that control the

robustness of the algorithm. This allows the researcher to minimize the execution time of the algorithm.

We find simulated annealing to be quite powerful. On the Judge function, simulated annealing always finds

the global optimum, while the IMSL routines do not. For the rational expectations model, the conventional

algorithms cannot optimize and do not offer any reason for their failure. When used as a diagnostic tool, simulated

annealing determines the problem. Even when this problem is eliminated, the conventional algorithms only rarely

find the optimum, while simulated annealing does so easily. The conventional algorithms cannot optimize the

translog cost frontier model while simulated annealing does so easily. For the neural network, simulated annealing

finds a much better optimum than any of the conventional algorithms. However, it is shown that the nature of this

function makes it virtually impossible for any method to find the global optimum.

Essentially, simulated annealing provides more features at the cost of an increase in execution time for a

single run of the algorithm. However, when compared to the multiple runs often used with conventional algorithms

to test different starting values, it is competitive. In some cases, simulated annealing is even competitive with a

single run of a conventional algorithm. As shown in Appendix A, computer power is increasing rapidly and the

resources needed for simulated annealing will soon, if not already, be available to most researchers for even the most

difficult problems.

This paper is organized as follows. Section II describes simulated annealing in detail and compares it to

conventional algorithms, while section III compares its performance on the four test problems to the IMSL

algorithms. This section also introduces many extensions to simulated annealing. Section IV briefly reviews these

extensions and introduces another. A conclusion summarizes the strengths and weaknesses of simulated annealing.

An Appendix examines another global optimization algorithm, the genetic algorithm, and finds that simulated

annealing is superior.

3

II. THE ALGORITHMS

A. Conventional Algorithms and Their Limitations

Conventional optimization algorithms, such as Newton-Raphson and Davidon-Fletcher-Powell, try to move

uphill (maximization is assumed in the general discussion of the algorithms) in an iterative manner. In very general

terms, starting from a point, they determine the best direction and step length to head uphill. After moving there,

this process is repeated until some stopping criteria is achieved. Statistical packages such as SAS, TSP and RATS

use these algorithms. General reviews on them can be found in either Judge et al. (1985), Press et al. (1986) or

Quandt (1983), and a more rigorous analysis is in Dennis and Schnabel (1983). Their operation is similar to a blind

man walking up a hill, whose only knowledge of the hill comes from what passes under his feet. If the hill is

predictable in some fashion, he will reach the top, but it is easy to imagine confounding terrain. Many conventional

algorithms make the function predictable by assuming the function is approximately quadratic. Unfortunately,

statistical functions may not be approximately quadratic. Implicit here is another assumption common to

conventional algorithms: the function has one optimum, so that any local optimum is also the global optimum.

While Kendall and Stuart (1978, p. 44) show asymptotically that likelihood functions have one optimum, the small

sample properties are unknown. Taken together, it is easy to see why conventional algorithms may have difficulty

finding the maximum. As the next section shows, simulated annealing takes a very different approach to optimizing

functions that involves significantly fewer limitations.

B. Simulated Annealing for Continuous Variable Problems

Simulated annealing’s roots are in thermodynamics, where one studies a system’s thermal energy. A

description of the cooling of molten metal motivates this algorithm. After slow cooling (annealing), the metal arrives

at a low energy state. Inherent random fluctuations in energy allows the annealing system to escape local energy

minima to achieve the global minimum. But if cooled very quickly (or "quenched"), it might not escape local energy

minima and when fully cooled it may contain more energy than annealed metal. Simulated annealing attempts to

minimize some analogue of energy in a manner similar to annealing to find the global minimum. Details can be

found in Press et al. (1986, pp. 326-34).

Early simulated annealing algorithms considered combinatorial systems, where the system’s state depends

on the configuration of variables. Perhaps the best known is the traveling salesman problem, in which one tries to

4

find the minimum trip distance connecting a number of cities. Combinatorial simulated annealing has been used

successfully in computer and circuit design [Kirkpatrick et al. (1983) and Wong et al. (1988)], pollution control

[Derwent (1988)], a special case of 0-1 programming [Drexl (1988)], neural networks [Wasserman and Schwartz

(1988)], reconstruction of pollycrystalline structures [Telly et al.(1987)] and image processing [Carnevali et al.

(1985)].

Other global optimization algorithms have been introduced in recent years. They include adaptive random

search [Pronzato et al. (1984)], genetic algorithms [Goldberg (1989)], the filled function method [Renpu (1990)],

multi level methods [Kan and Timmer (1987)] and a method using stochastic differential equations [Aluffi-Pentini

et al. (1988)]. Both Vanderbilt et al. (1984) and Bohachevsky et al. (1986) have modified simulated annealing for

continuous variable problems.

However, the Corana et al. implementation of simulated annealing for continuous variable problems appears

to offer the best combination of ease of use and robustness, so it is used in this study. While a complete description

can be found there, a summary follows and the algorithm in pseudo-computer code is provided in Appendix B. The

essential starting parameters to maximize the function f(X) are T , the initial temperature; X, the starting vector of0

parameters; and V, the step length for X. Note that X and V are both vectors of length n, the number of parameters

of the model. Upper case refers to vectors and lower case to scalars (with the exception of temperature, T).

A function evaluation is made at the starting point X and its value f is recorded. Next, a new X, X′,is

chosen by varying element i of X,

where r is a uniformly distributed random number from [-1, 1] and v is element i of V. The function value f′ isi

then computed. If f′ is greater than f, X′ is accepted, X is set to X′ and the algorithm moves uphill. If this is the

largest f, it and X are recorded since this is the best current value of the optimum.

If f′ is less than or equal to f, the Metropolis criteria decides on acceptance (thermodynamics motivates this

criteria). The value

is computed and compared to p′, a uniformly distributed random number from [0, 1]. If p is greater than p′, the new

5

point is accepted and X is updated with X′ and the algorithm moves downhill. Otherwise, X′ is rejected. Two

factors decrease the probability of a downhill move: lower temperatures and larger differences in the function’s

value. Also note that the decision on downhill moves contains a random element.

After N steps through all elements of X, (all such "N" parameters are set by the user) the step length vectorS

V is adjusted so that 50% of all moves are accepted. The goal here is to sample the function widely. If a greater

percentage of points are accepted for x , then the relevant element of V is enlarged. For a given temperature, thisi

increases the number of rejections and decreases the percentage of acceptances. After N times through the aboveT

loops, the temperature, T, is reduced. The new temperature is given by

where r is between 0 and 1. A lower temperature makes a given downhill move less likely, so the number ofT

rejections increase and the step lengths decline. In addition, the first point tried at the new temperature is the current

optimum. The smaller steps and starting at the current optimum focuses attention on the most promising area.

The algorithm ends by comparing the last N values of the largest function values from the end of each
�

temperature reduction with the most recent one and the optimum function value. If all these differences are less than

�, the algorithm terminates. This criteria helps ensure that the global maximum is reached.

Note that simulated annealing first builds up a rough view of the surface by moving with large step lengths.

As the temperature falls and the step length decreases, it slowly focuses on the most promising area. All the while,

the algorithm can escape from local maxima through downhill moves. Eventually, the algorithm should converge

to the function’s global maximum.

Simulated annealing has several potential advantages over conventional algorithms. First, it can escape from

local maxima. In thermodynamic terms, while conventional algorithms quench by simply heading up the current hill

without regard to others, simulated annealing moves both uphill and downhill. Also, the function need not be

approximately quadratic. In fact, it need not even be differentiable [Corana et al. (1987) successfully demonstrate

simulated annealing on a parabolic function punctured with holes]. Another benefit is that the step length gives the

researcher valuable information about the function. If an element of V is very large, the function is very flat in that

parameter. Since it is determined by function evaluations at many points, it is a better overall measure of flatness

than a gradient evaluation at a single point. Finally, simulated annealing can identify corner solutions because it can

6

"snuggle" up to a corner for functions that don’t exist in some region. The most important advantage of simulated

annealing is that it can maximize functions that are difficult or impossible to otherwise optimize. This is

demonstrated in the next section with the test problems.

The sole drawback to simulated annealing is the required computational power, but this problem is

disappearing or has disappeared. Appendix A describes the continuing improvements occurring in high performance

computing. Briefly, the power of the first Cray supercomputer can now easily be put on a desktop, and this trend

shows no sign of slowing. Thus, simulated annealing is an attractive option for difficult functions.

III. SIMULATED ANNEALING COMPARED TO CONVENTIONAL ALGORITHMS

A. Comparison Framework

The previous section demonstrated that simulated annealing has promise for optimizing statistical functions.

To see if this promise holds, simulated annealing was compared to three conventional algorithms on four different

statistical problems. The purpose here is to see if simulated annealing works on these problems, while section IV

discusses improving the algorithm.

All three multivariate optimization algorithms from the IMSL Math/Library Edition 10 were chosen for

comparison with simulated annealing. This library was chosen because of its quality and availability. The routines

are UMPOL, a simplex algorithm, UMCGF, a conjugate gradient algorithm with numerical derivatives, and UMINF,

a quasi-Newton algorithm with numerical derivatives. The numerical derivative versions of UMCGF and UMINF

were chosen because computing the analytical derivatives is very difficult since two of the four functions were quite

complex (the simplex algorithm does not use derivatives).

Since conventional algorithms are sensitive to starting values, each single test used one hundred different

randomly selected starting values. This number gives the algorithm a good chance of finding the optimum. Plus,

the typical researcher is unlikely to use more. The range used to select them should not be terribly critical since so

many are used. With simulated annealing, one hundred starting values were used in one problem, but computer time

constraints prevented using this approach for the other three. In these cases, the results were verified in another way.

7

B. Test Functions

Judge et al. (1985, pp. 956-7) provide the first test function. This nonlinear least squares problem is written

in minimization form and has two local minima. It has two parameters and 20 observations. While small and

artificial, it serves as a convenient test from the literature for optimization algorithms because of the two local

minima. As will be seen, conventional algorithms cannot by themselves distinguish between the two, while simulated

annealing has no difficulty. Note that it is optimized in minimization form.

The second function derives from the rational expectations version of the monetary theory of exchange rate

determination as presented by Woo (1985). The model consists of the following structural relationships

where m, p, e, and y are the log levels of the money stock, price level, exchange rate, and output, respectively, and

where star superscripts denote variables in the domestic economy. These equations represent the standard stock-

adjustment money demand equations when the interest rate elasticities and adjustment coefficients are the same in

both countries. Purchasing power parity and uncovered interest parity hold. The stochastic specification of the

model is completed by assuming that the exogenous variables of the system, M ≡ m - m , y , and y evolvet t t t t
* *

according to a stable AR(1) representation given by

where X ≡ [M y y]′, and where B is a 3-by-3 parameter matrix such that the roots of det(I-BL) lie within thet t t t
*

unit circle.

The solution and estimation procedure follows that outlined by Salemi (1986), which employs the stable

vector ARMA representation for the variables of the system implied by the model above. To derive this

representation, let Z = [e X ′]′, and write the model above ast t t

where � , � , � , and � are five by four parameter matrices containing the structura0 1 2

as well as the 9 elements of B, and where U is the vector of structural disturbances. A solution of the formt

8

then results in the stable ARMA representation given by

where the elements of A have been restricted so as to analytically cancel the unstable root of the AR polynomial.0

As indicated by Salemi, the estimates of the parameters of this model may then be obtained by minimization of

with respect to the four system parameters (�,�,�,�) and the nine AR parameters (b ,...,b), subject to the complex11 33

nonlinear restrictions imposed across these parameters in the elements of A [the transition from a maximum0

likelihood model to a model based upon the minimization of a sum of squares is described by Tunnicliffe-Wilson

(1973)].

 The third problem is from a study of firm production efficiency based on a system of a frontier cost function

and its input share equations [see Ferrier and Lovell (1990)]. Three error terms on the cost equation capture the

effects of two types of inefficiency and random error. The error terms on the share equations are linked to one of

the error terms on the cost equation (errors in input share selection results in inefficiency, thus raising costs). After

making assumptions concerning the various disturbance terms, estimation of the system is carried out by minimizing

a function derived from the likelihood function. The estimation is carried on real world data on U.S. depository

institutions, and involves 62 parameters and 575 observations.

The fourth test function comes from the neural network literature. While neural nets have many economic

applications [see Baum (1988) and Kuan and White (1991) for surveys], the use here follows Gallant and White

(1989). They use a neural net to approximate an unknown function, g(x), given by

Neural networks are organized in layers, from the input layer to the output layer. In this neural net, the x vector of

length r is the input layer. The � , vectors, j = 1,...,K, are weights to the next layer. This layer is "hidden" becausej

it is not the output, g (only the input and output layers are "seen"). Since there is only one hidden layer, this isK

a single hidden layer neural network. The function G is the hidden unit activation function (a logistic in Gallant and

White) and �, a vector of length K, is the hidden to output layer weights.

Gallant and White propose to use the neural net to approximate the unknown function that generates a

9

chaotic series. To test this approach, a chaotic series of length n is generated by a discrete version of the Mackey-

Glass equation:

This is a useful generator of data for the study of chaotic economic and financial series as it generates data similar

to those found in financial markets.

The � and the � vectors are chosen to minimizej

Thus, the neural net parameters are chosen so that it approximates the function that generates x given x , ..., x . t t-1 t-5

This is a difficult optimization problem because conventional wisdom has it that this function has many local minima

(this assertion is quantified later).

In this analysis, r = 6 (one element of each � is not multiplied by an element of x; this is known as a biasj

term), K = 5 and n = 1000. These values of r and K yield 35 parameters to "train" or fit the neural net to the

function. These values were chosen because Gallant and White found they perform well in fitting the function to

this series length and it is a problem of moderate size.

C. Computing Environment

All computing was done at the University of Texas Center for High Performance Computing in Austin on

Cray X-MP/24 and Cray Y-MP/864 supercomputers (all computing was done at one site even though this level of

performance was not always needed). All programs were written in Fortran 77 with some Fortran 90 (which includes

many features that simplify writing programs with arrays) extensions using the CFT77 compiler, versions 2.0, 3.0

and 4.0. A 64 bit representation was used for all floating point numbers; while single precision on a Cray, this

represents double precision in the Vax, IBM mainframe and PC worlds.

The Cray presented one difficulty. When a floating point error occurs on it, the program terminates. This

is different from the IBM mainframe world where a software correction often takes place and execution continues.

Thus, it would appear that results generated on a Cray may not carry over to other computers. However, the Cray

handles an unusually wide range of numbers, from 10 to 10 . Thus, floating point errors are only likely to2466 -2466

occur if the algorithm is beyond the likely region of a solution. In these situations, a computer with a fixup for

10

floating point errors is unlikely to do better. Thus, the Cray’s lack of a fixup for floating point errors should not

limit the lessons learned here.

D. Results with Judge’s Function

Table 1 shows the results of all algorithms for the Judge model. All algorithms were run 100 times with

different starting values for the model parameters (the same ones were used by all algorithms). A uniformly

distributed random number generator selected them from -100 to 100 to simulate the researcher’s uncertainty about

the best starting value. For the IMSL routines, their suggestions for algorithm inputs were used where given, except

the maximum number of function evaluations was set to a very large value to avoid early termination. Otherwise,

neutral values were chosen. The inputs for simulated annealing are reported in Table 2.

The top of Table 1 lists the results from the algorithms. In all cases they converged to one of the two local

minima (the global minimum has a value of 16.082, while a nearby local minimum has a value of 20.482). The

conventional algorithms were split between them, while simulated annealing always found the global minimum. Of

course, it could be foreseen that the conventional algorithms would split between the two optima given their design

and the different starting values. However, this does demonstrate that simulated annealing can find the global

optima. In effect, this is an early and very simple comparison.

The remaining part of Table 1 lists the mean number of function evaluations and mean execution time for

the 100 runs. As expected, the simplex algorithm takes longer than the other conventional algorithms [Press et al.

(1986, p. 289)]. The much longer time for simulated annealing is largely due to using Corana et al.’s very

conservative suggestions for parameters (which are appropriate for very difficult functions). In fact, a grid search

with a resolution of about 0.2 could be accomplished in the same number of function evaluations (note that such a

fine resolution depends upon the low dimensionality of this problem). In practice, a coarser grid search coupled with

a conventional algorithm could be used. However, Section IV shows that this number of function evaluations can

be reduced by more than 99% to 3789. Still, simulated annealing requires more execution time than conventional

algorithms. Simulated annealing’s real promise is on more difficult functions.

Table 2 shows the results of one simulated annealing run. It first lists the values for the input parameters.

With the exception of T , V and �, all are values suggested by Corana et al. The initial temperature, T , was chosen0 0

so that the step length was approximately 100 in both parameters (different temperatures were tried until this was

11

achieved). This size ensures that the function is well searched. Correspondingly, the initial value of V is 100 (since

the algorithm adjusts V, this initial parameter is not very important). The parameter � was chosen to ensure that the

solution has converged to the global maximum. It is slightly larger than the final tolerances used in the

quasi-Newton and simplex algorithms (the conjugate gradient documentation is silent on this matter).

Table 2 next lists some of the intermediate output as the temperature falls. For each of the selected

temperatures (from more than 200), the current best parameter values along with the resulting function value are

shown. Also listed are the number of downhill and uphill moves. Downhill evaluations are always accepted, while

uphill moves are accepted according to the Metropolis criteria. These results indicate that the step length is chosen

correctly since about half of all functions evaluations are accepted (recall the step length adjusts to ensure this). The

number of function evaluations at each temperature is N �N �n, or 4,000. Finally, the step length for both parametersS T

is shown.

As the temperature falls, one can observe the algorithm closing in on the global minimum. The falling

temperature along with the Metropolis criteria causes fewer uphill moves to be accepted. This rise in rejections in

turn shrinks the step length. In conjunction with the algorithm starting out at the current optimum with each new

temperature, the smaller step length focuses the algorithm on the most promising area. The final part of Table 2

shows the results produced by a successful termination of the algorithm.

This function shows the promise of simulated annealing as it found the global minimum 100 out of 100

times. Still, these results are not conclusive because, other than having trouble finding the global minimum, the

conventional algorithms performed well. If faced with such a function, the researcher would only have to try several

different starting values to find the global minimum. The next three functions provide much more difficult tests.

E. Results with the Rational Expectations Model

The objective function for the rational expectations exchange rate model is difficult to minimize, in part

because it effectively does not exist for some parameter values. In these regions, the function value is either complex

or the elements of the covariance go to infinity. When these regions were encountered, the objective function value

was set to about 10 to force termination of the conventional algorithms (the effect on simulated annealing is2000

described below). Unfortunately, this seems to be the only way for the IMSL routines to terminate when these

12

regions were encountered. Values slightly different from 10 marked the reason for failure.2000

The conventional algorithms experienced great difficulty here. Of the 100 runs with the simplex and

quasi-Newton algorithms, about half terminated due to floating point errors, which indicated that the algorithm is

beyond the likely region of a solution due to the large values needed to cause a floating point error on the Cray.

After accounting for the runs that reached regions where the function did not exist, the simplex algorithm found only

two possible solutions and the quasi-Newton algorithm found six (all of which had smaller objective function values

than the simplex algorithm produced). However, none of these six possible solutions had zero gradients and the

values of five of the model parameters varied greatly (these were behavioral parameters, while the others are AR

coefficients in a forecasting equation).

The conjugate gradient algorithm performed slightly better. Only one run resulted in a floating point error,

while 53 ended because the algorithm entered a proscribed region. Of the other runs, seven reported objective

function values just slightly larger than these reported by the quasi-Newton algorithm (the other values were quite

a bit larger). Like the quasi-Newton result, the five behavioral parameters varied greatly in value and the gradients

were not quite zero. Thus, the conventional algorithms failed to optimize this function since no two runs resulted

in the same set of parameter values and no solution had a zero gradient. Further, they indicate that the function

appears to be flat in a subset of the model’s parameters. Conventional wisdom has it that this is a feature of some

rational expectations models.

Simulated annealing, like the conventional algorithms, also experienced some difficulty. It converged to

different optima for different starting values and seeds for the random number generator. The function was then

modified to search a restricted region of the parameter space to find an explanation. For parameter � , let thei

region’s boundary be marked by � and ß . If simulated annealing chooses a value for � inside this range, iti i i

proceeds as usual. If outside, the objective function was not calculated and a very large value was returned instead,

which caused the point to be rejected. This limits the algorithm to be inside the boundary. The previously

mentioned modification to the objective function for regions in which it does not exist excludes the algorithm from

those regions as well. This ability to focus on one area for minimization is a distinct advantage of simulated

annealing. When this region was enlarged over successive runs, an interesting phenomena occurred: the optimal

value of one parameter (the interest rate elasticity of money demand) often followed its upper bound. This suggested

13

that the function decreased in this parameter (i.e., the algorithm found a minimum near a saddlepoint). To explore

this situation, several of these minima were plotted with the elasticity varying and the other parameters held constant.

These plots showed that the interest rate elasticity parameter achieved a minimum at the boundary. Thus, the

function appeared to be a ditch in this parameter: as the boundary expanded, the minimum point of the function

followed this wandering ditch. This explains the problems of the conventional algorithms. Thus, simulated annealing

is useful as a diagnostic tool for difficult functions. (It should be noted that it may be possible to identify problems

like this with conventional algorithms by examining the Hessian. Unfortunately, this idea could not be done here

because these IMSL routines do not allow the user to recover the Hessian.)

To continue the comparison of the algorithms, the interest rate elasticity parameter was set to .25 and the

above experiments were repeated. This reduces the number of parameters in the model to 13. Table 3 contains the

results from the conventional algorithms on this modified function. The first category lists outcomes by the final

value of the objective function. This includes errors in the function evaluation and solutions. The sum of these

possibilities yields the number of non-floating point error returns because floating point errors immediately terminate

the program and the function value is unknown. The second category lists the number of floating point error returns.

Since the Cray supports such a wide range of floating point values, these are likely caused by an out of control

algorithm (i.e., floating point errors indicate that the algorithm was very far removed from any likely solution given

the size of values that produce floating point errors on the Cray). The number of runs in this and the previous

category sums to 100, the total number of runs. The next category reports the minimum value found (by default,

from the "other" possibility). The final category lists the results reported by the algorithm.

The simplex algorithm again performed poorly with many floating point error terminations and only a few

terminations near the presumed minimum. The quasi-Newton algorithm did somewhat better by finding the presumed

minimum a total of 10 times. However, 4 of these 10 were reported as errors. Thus, even with a moderate number

of runs, the researcher would have difficulty interpreting the results obtained with either of these algorithms.

The conjugate gradient algorithm found the correct minimum 44 times. All objective function values were

within 10 of each other in this count and the model parameters were very similar if not identical. Thus, this-6

algorithm would have proved fairly useful to the researcher for this function since about half of all runs terminated

successfully.

14

Finally, the simulated annealing algorithm was employed. One hundred different starting values could not

be used to check the algorithm’s results due to the computational load with this function, so another method was

used. The algorithm was run twice with different starting values for the model’s parameters and a different seed

for the random number generator inside the algorithm. This generator selects points inside the step length for

analysis and selects uphill moves through the Metropolis criteria. Thus, the algorithm follows a completely different

path in these two runs. If it terminates at the same point, one has some assurance that simulated annealing has

indeed found the global minimum. The only other change from the runs with Judge’s function are in N (set to 20)T

and � (discussed below). The selection of the initial temperature is an important consideration. If the initial

temperature is too low the step length will be too small and the area containing the optimum may be missed. If too

high, then the step length is too large and an excessively large area is searched. If the step length is extremely large

floating point errors may result from running very large values through the function.

The following method was employed to find T . It was set to 10 and the temperature reduction parameter,0
7

r , was .10. Rather than finding the minimum, the goal was to quickly find the temperature at which the step lengthT

began to decline. This occurred with a temperature of 100. Upon further work, an initial temperature of 10 was

chosen because the step length was only slightly smaller and the lower temperature allowed a shorter execution time.

Interestingly, even at a temperature of 10 , some parameters had a step length less than 1, which implies that the7

function is quite narrow in these parameters.

The function was then modified to include bounds. The lower bound was set to -25 and the upper to 25

for each model parameter, a range which should include any economically plausible values. The model was later

run without any bounds and the same solution was found (bounds were first used because experience with the

translog cost frontier model, discussed in the next section, showed that floating point errors could occur without them

due to very large parameter values being run through the function). The initial runs on the Cray were in a job

classification that allowed the jobs to execute about 22 minutes, which corresponds approximately to � = 10 . The-6

next longer job classification had long turn around times (sometimes days at that time), so exploratory runs were in

this category. In two runs with different random number generator seeds and starting values, the algorithm

converged to approximately the same objective function value. Further, the difference in the reported optimal model

parameters was on the order of the step length, so both runs were minimizing in the same region. This implies that

15

both were converging to the same point. To make certain, a run was then made in the next job classification with

� = 10 , which resulted in a solution in the same region. Further, the successful runs from the conventional-11

algorithms found this same point. The results are shown in Table 4. To further test the algorithm, the starting values

from one of the above mentioned shorter runs was used with the random number seed from the other shorter run

with � = 10 . When run in the extended job category, the same point was found. Thus, three different paths were-11

taken and they all found the same optimum. In addition, the elements of the gradient at this point were

approximately zero. Also, note that the optimal function value differs from the best one from the quasi-Newton

algorithm by 10 , an insignificant amount. Finally, it can be seen that about half of all function evaluations were-12

accepted, as expected.

Simulated annealing demonstrated two advantages with the rational expectations model. First, it was able

to identify, with a modification introduced here, the reason the conventional algorithms could not minimize the

function. Second, with that problem eliminated, simulated annealing was much more consistent in finding the

minimum (it was 3 for 3, while the conventional algorithms were, with generous accounting, 64 for 300). This was

particularly true when the simplex and quasi-Newton algorithms are considered (generously, 20 for 200). While a

single run of simulated annealing requires substantially greater execution time, this is ameliorated by the large

number of runs with a conventional algorithm a researcher would have to make to be sure of the robustness of

estimated results. Section IV shows that the execution time of simulated annealing can be substantially reduced for

this model to the point where it is competitive with a single run of a conventional algorithm.

F. Results with the Translog Cost Frontier Model

The objective function for the translog cost frontier model was easier to work with than the rational

expectations function because the only errors in its evaluation were floating point errors. Table 5 reports the results

from the conventional algorithms (its format follows Table 3).

The first part of the table shows that only the quasi-Newton algorithm was unstable because only it

experienced floating point errors. Unfortunately, run-on executions were more of a problem. For instance, one

simplex run executed (unintentionally) for 1 hour, 47 minutes for more than 2 million function evaluations! Clearly,

the starting values here were not useful. Rather than exploring a few runs with such extended execution times which

may simply be exhibiting pathological behavior, the number of function evaluations was limited. The number of

16

function evaluations for the simplex algorithm was limited to 25,000, which yields a maximum execution time of

about 58 seconds. A similar choice was made for the conjugate gradient algorithm, but since few runs resulted in

run-on executions, a limit was chosen that constrained execution time for any one run to about 12 minutes, surely

enough time to find a optimum. No constraint on function evaluations was applied to the quasi-Newton algorithm

since it did not experience this problem.

As Table 5 shows, no floating point errors occurred with the simplex algorithm. However, only 14 runs

terminated normally while the other 86 reached the function evaluation limit. The normal returns yielded objective

function values of approximately 1.67�10 . It appears that there is a plateau of about this height since the model10

parameter values varied dramatically. The category for too many function evaluations included the best value found

for the objective function, 4363.81. A slightly smaller value was found in an earlier trial with unlimited function

evaluations. In 144,284 function evaluations, a value of 2543.79 was found. The same starting value lead to 4721.51

when the number of function evaluations was constrained to 25,000. This exceedingly slow progress toward the

minimum may indicate that the function has steep valleys, something the simplex algorithm may have difficulty

traversing [Press et al. (1986, p. 290)]. Confirmation of this hypothesis is demonstrated below.

Like the simplex algorithm, the conjugate gradient algorithm experienced no floating point errors and only

six runs ended due to too many function evaluations. These six runs produced the best function values, with the least

being 1015.17 (values ranged up to 1308.62). In every case at least some elements of the gradient were larger than

100 in absolute value (from this point forward, all reported gradient values are in absolute value terms). These six

runs consumed 97.1% of the execution time of the 100 runs. The other 94 terminated with reported problems with

the gradient. Since in these runs at least some elements of the gradient were quite large (values for some elements

in of each ranged from 10 to 10), this report is not surprising. This confirms the explanation offered for the8 20

problem with the simplex algorithm.

The quasi-Newton algorithm yielded 51 terminations due to floating point errors, indicating that the

algorithm was very far removed from any likely solution given the size of values that produce floating point errors

on the Cray. The other 49 runs resulted in 7 returns reported as normal (though every gradient had elements of either

0.0 or 10 and larger), and 42 runs in which the algorithm terminated abnormally. Here too, gradient values were8

10 and above. The best objective function value was an anomaly: it was negative, but since all parameter values8

17

were greater than 10 in absolute value, this result can be discarded on the grounds that it is nonsensical. The next3

best value was 4019.03, but again, elements of the gradient were large (some were more than 10). 3

Table 6 shows the results with simulated annealing. To avoid floating point errors due to large parameter

values being run through the algorithm, the parameter space for this function was restricted: the lower bound was

set to -50 and the upper to 50. An initial temperature of 500 produced an initial step length vector with elements

that averaged in the teens, a reasonable span given the expected parameters values. As with the rational expectations

model, two preliminary runs with different starting values and seeds for the random number produced minima in the

same range. A run with a longer execution time and � = 10 then produced a refined estimate of this minimum. -8

As a check, the gradient at this point was examined. Its values were typically 10 , except for � , which was .26. -2
59

While these values were much smaller than any produced by the conjugate gradient or quasi-Newton algorithms, the

value of .26 was a cause for concern. Thus, a smaller � of 10 was chosen and the algorithm was rerun.-10

The results are shown in Table 6. Note that the value of the objective function was -1601.08. All gradient

elements were approximately 0.5�10 or so, except for � , which was .24. A plot showed that the estimated value-3
59

for � was indeed the minimum. This gradient value occurred because the gradient algorithm had difficulty with59

the extreme narrowness and slight asymmetry of the function in this area.

Simulated annealing was able to find the minimum while 300 runs with three different conventional

algorithms was unable to find this minimum even once. This offers strong evidence that simulated annealing can

be a very useful algorithm for the optimization of statistical functions. Further, note that the execution times for

simulated annealing and the conventional algorithms are comparable.

G. Results with the Neural Network

Table 7 shows the results with the conventional algorithms on the neural net, while Table 8 contains the

results obtained using simulated annealing. The starting values were chosen from the range of -600 to 600

(preliminary work showed optimal values in this range). The top of Table 7 shows that, like the translog cost

frontier model, only the quasi-Newton algorithm experienced a problem with floating point errors. As run-on

executions were also a problem, limits were placed on the number of function evaluations to ensure that 100 sets

of starting values could be run in a reasonable time.

All 100 runs with the simplex algorithm terminated because of too many function evaluations (more than

18

20,000). The minimum function value found was 229.74. The conjugate gradient algorithm also yielded a simple,

but different story: all 100 runs terminated due to problems with the line search. The minimum function value found

was 281.08. The quasi-Newton algorithm generated the most varied results. Five runs terminated with floating point

errors, which indicates a severe problem with the algorithm (floating point errors occur with such large exponents

that the algorithm is surely away from any region of possible interest). Of the 95 runs that terminated without

floating point errors, 58 reported resulted normal terminations, 35 reported possible problems with the step tolerance

and two terminated with too many function evaluations. The minimum function value was 228.21, the best for any

of the conventional algorithms.

Initial runs with simulated annealing used T = 1.0 and r > 1 (with r > 1, temperature rises, which in turn0 T T

increases the step lengths) to find the initial temperature such that each element of the step length vector was 1200

to cover the region of likely values (-600 to 600). These bounds for the search avoided both the floating point errors

and the corner solutions that were observed in some initial runs. These runs found that T = 3.5�10 produced the0
8

desired initial step lengths. The first optimizing run used this initial temperature. In addition, the number of function

evaluations was limited to conserve execution time, but was set in conjunction with r and the other parameters toT

reduce the likelihood that the algorithm would quench but also achieve a small terminal step length (Table 8 shows

that this was achieved). Standard values were used for the other parameters for simulated annealing. Even given

its preliminary nature, Table 8 shows that the optimal value of the function was 22.845, about an order of magnitude

smaller any of the 300 runs with the conventional algorithms. In addition, this execution time is comparable to the

total execution time (i.e. for 100 different sets of starting values) of any of the three conventional algorithms.

To check this result, a different starting value and a different seed were used in another run. Unfortunately,

while a similar function value was found, the �’s were very different. Thus, as anticipated, there appear to be

multiple optima in this function. In an effort to find the global optimum, the parameter space in the next run was

reduced by shrinking the bounds with information gained from these solutions. The optimal � vector had values

of less than 20 in absolute value, so the bounds for � were reduced. This allowed T = 4,000 because the function0

is much steeper in � than in �. The combination of a smaller T , the same execution time and the same desired0

terminal temperature allowed for a larger r , which makes quenching less likely. Even so, the same optima couldT

not be found twice. Finally, patterns were noticed in the solutions and these were exploited to further search for the

19

optimum. In 4 of the 5 � vectors, the 5 and 6 elements were quite large (typically more than 300 in absolutej
th th

value), while remaining � have small elements (typically less than 10 in absolute value). Table 8 demonstrates thej

pattern. Even when the bounds were adjusted to search in this much smaller region, the same optima was never

found twice. However, the best optima, a value of 10.649, was found in one of these runs.

Further analysis of the neural net revealed an interesting phenomena: the large values in the optimal �j

vectors swamped the other values in the x�� term to create such large absolute values that the logistic function G(�),j

which is bounded by 0 and 1, was approximately either 0 or 1. In fact, for the best optima, 78.9% of the G(�)’s were

either less than 10 or greater than 1 - 10 . Thus, to a considerable extent, the neural net was reduced to a linear-6 -6

combination of the elements of the � vector.

Even though simulated annealing found a much better optimum than any of the conventional algorithms and

in less time than all but one, it was distressing that it was incapable of finding the global optimum. To understand

this outcome, an analysis was made of the neural net. First, a rough lower bound on the number of local optima

was calculated, then the nature of these local optima was examined.

Since enumeration of the local optima is impractical, the following method was used. A measure of the

volume [more accurately called content since there are more than three dimensions; see Kendall (1961)] of the

average local optima was determined with a local optimizer. Then, the content of the total solution space is

determined. Division of the content of the two spaces should yield a rough estimate of the number of local optima.

The quasi-Newton algorithm was used to find local optima since it produced the most error free optima.

Different length vectors in random directions were then drawn from each local optima and the end of that vector was

used to restart the quasi-Newton algorithm. The length of the vectors were increased until the algorithm no longer

converged to the starting point of the vector. The longest vector that lead to convergence back to the local optima

was used as the radius of convergence. To be conservative, four different vectors of the same length were drawn

at a time and the length increased until only one of the four converged to the starting point of the vector. Of the

seven local minima examined (this number was chosen due to floating point and computer time constraints), the

average radius of convergence was found to be 32.53. For a hypersphere of n dimensions with a radius of r, the

content is

20

[see Kendall (1961, p.35)]. This yields a content of the average local optima of 2.84�10 .46

Determining the content of the solution space can be fraught with difficulties. For instance, if the local

optima come in two widely spaced but tight clusters, using the average distance between local optima to generate

the content would likely yield too large a value. To avoid a complicated analysis, the content of the solution space

is taken to be the content of the hyper-rectangle created by the two closest local optima (all bounding hyperplanes

are perpendicular to the axes in Cartesian space). While this surely underestimates the true content, it is easy to find

(PROC CLUSTER in SAS® was used) and quite conservative. This content is 8.29�10 . Dividing this and the65

content of the average optima yields on the order of 10 local optima.19

This many optima might not pose a problem if each local optima is just a dimple on a larger convex surface

(like an egg carton titled up at the ends). With such a surface, a global optimization algorithm could use some

average of the surface to find the global minimum. Unfortunately, this does not seem to be the case with the neural

net. The average value of the function, when sampled over 100,000 points with all parameters randomly sampled

from -600 to 600 was 3.75�10 (even when the bounds on the � vector were set to -3.5 and 3.5, as the simulated8

annealing results suggest, the average value was 13,427). The largest optima found by the three conventional

algorithms in their combined total of 300 runs was 633.20 and the smallest was the previously reported 228.21.

Given this small range and the large average value of the function, the neural net surface appears to be more like

that of an egg carton that has not been titled or curved to any appreciable degree, rather than one that has been

distorted.

Given the relative values of the optima, it would appear that each local optima would need to be examined

to find the global optima. Given the number of local optima, this hardly appears likely given current or foreseen

computers.

21

IV. IMPROVEMENTS TO SIMULATED ANNEALING

A. Review of Previously Introduced Improvements

Three improvements to simulated annealing were introduced above. One allows the researcher to test if

simulated annealing has indeed found the global optimum. By rerunning the algorithm with a different starting value

and a different seed for the random number generator, an entirely different sequence of points is selected by the

algorithm. If the same optimum is found, there is a higher degree of confidence in the global optimum. This

modification was very useful for understanding the unmodified rational expectations model and the neural net.

A second improvement restricts the search area to a subset of the parameter space. This was useful as a

diagnostic tool for difficult functions and to restrict the parameters chosen by the algorithm so that very large values

are not run through the statistical function, which may cause floating point errors. This is also useful for functions

that are very flat in some variables where a low initial temperature might restrict the search in other variables.

When minimizing a function, one can think of this as putting the function in a very deep well. Points selected

outside the well yield very large values and are rejected. This forces the algorithm inside the well and to the region

of interest. This modification was essential for the translog cost frontier and rational expectations models.

The final improvement allows the researcher to determine the initial temperature, an essential parameter for

the algorithm. It was also shown to be quite useful.

B. Tailoring the Algorithm to the Function

Section III showed simulated annealing to be clearly superior to conventional algorithms for some difficult

statistical optimization problems. However, this benefit does not come without cost because simulated annealing may

require substantially more execution time. This section introduces a modification to minimize execution time.

Essentially, it tailors simulated annealing to the minimum level of robustness required to optimize the function.

This approach chooses the appropriate r and N for the function at hand. These two values greatlyT T

influence the robustness and number of function evaluations since they control how quickly the temperature declines

and the number of function evaluations performed at each temperature. Much smaller values for r and N than thoseT T

suggested by Corana et al. [.85 and the maximum of (100, 5�n), respectively] are chosen and used in one or several

runs. These values are then increased and the algorithm is run again with a different random number generator seed

and starting value, resulting in an entirely different sequence of sampled points. If the same optimum is found, one

22

has a reasonable degree of assurance that the global optimum is reached. If a different optimum is achieved, then

the procedure is repeated with larger values for r and N . In these runs, one should carefully monitor theT T

intermediate results. The following results are a bit artificial since the optimum is known, but they should be useful

as a guide.

This approach is first illustrated with the Judge function. With N = 1 and r = .05, 14 of 100 runs withT T

different starting values and seeds found the local and not the global minimum (i.e., the algorithm quenched). When

N was increased to 2, only two runs terminated incorrectly, while with N = 5, all terminated correctly. ThisT T

required an average of 3789 function evaluations, a decrease of 99.6% from the 852,001 function evaluations used

with the Corana et al. parameter suggestions (see Table 1). Since temperature fell very quickly and relatively few

evaluations were made at each temperature, only 38% of the function evaluations were accepted. Unless C (which

controls how fast the step length is adjusted) is increased, this limits the values of N and r since successfulT T

evaluations are essential to the operation of the algorithm.

The rational expectations function yielded the same results. With 10 runs and N = 2 and r = .1, five runsT T

terminated correctly and five failed. The failures were easy to detect because all terminated at different optimal

values and after a few initial temperature reductions, there were no uphill moves (it appears that the algorithm was

caught in a local optimum and it couldn’t escape given these parameter values). When r was increased to .25, nineT

runs terminated normally. The abnormal run had the same characteristics as the previous ones. The successful runs

required an average of 13,521 function evaluations, a reduction of 98.6% from the 956,801 in Table 4 (where NT

was 20 and r was .85). This produced an execution time of 69 seconds, better than any of the sets of 100 runsT

reported in Table 3 and comparable to some of the single runs.

This technique produced no reduction in N and r for the translog cost frontier model, so there was noT T

reduction in the 2,554,401 function evaluations reported in Table 6. Even a small reduction in N and r producedT T

runs, that with only a few temperature reductions, lead to no uphill moves -- exactly the same phenomena that

occurred with the rational expectations functions. Given the extremely steep gradients of this function, it is not

surprising the algorithm got stuck in a local optimum. This method was not used with the neural net since the global

optimum was not found.

Thus, of the functions with a global optimum that can be found, this section shows that only the translog

23

cost frontier model requires a high performance computer for successful optimization and that the number of function

evaluations needed by simulated annealing may be quite reasonable for some functions. Thus, simulated annealing

is immediately useful to researchers for many functions.

V. CONCLUSION

This paper tests a recently developed algorithm, simulated annealing, on four different statistical models that

require optimization. Compared to the three conventional optimization algorithms from the IMSL library, simulated

annealing is shown to have several advantages. First, it can be used as a diagnostic tool to understand how

conventional algorithms fail. Second, it can "step around" regions in the parameter space for which the function does

not exist. But, most importantly, it can optimize functions that conventional algorithms have extreme difficulty with

or simply cannot optimize at all.

The first test model, a synthetic example from the literature, has two minima. Simulated annealing correctly

differentiated between the global and local minima, while the conventional algorithms did not. The second test

function was a rational expectations exchange rate model. All conventional algorithms failed on it, and simulated

annealing was able to identify the reason. After correcting the problem, the conventional algorithms found the

optimum only 21% of the time, with most of the successes from only one algorithm. Simulated annealing was able

to find the optimum easily. The third test function was from an efficiency study of the banking industry using a

translog cost frontier model. None of the conventional algorithms were able to optimize it, but simulated annealing

did so easily. For the fourth test function, the neural network, simulated annealing found a much better optimum

than any of the conventional algorithms. While simulated annealing was not able to find the global optimum, it was

shown that the nature of the function makes it virtually impossible for any method to find the global optimum.

 We introduced a number of extensions to simulated annealing. Perhaps the most important one allows the

researcher to tailor the algorithm to the function to minimize the execution time of the algorithm. This allows

simulated annealing to find the global optimum for actual econometric problems on commonly available computers.

24

APPENDIX A: COMPUTER PERFORMANCE

The most useful widely used benchmark of computer performance for econometric work is probably the

Linpack benchmark. In it, a system of 100 linear equations are solved and the number of floating point operations

per second are counted (mflops for a million of them). This is an appropriate benchmark since it involves floating

point operations on arrays.

Table A1 [from Dongarra (1991)] shows the number of floating point operations per second on the Linpack

benchmark for some existing computers using one processor. The Cray Y-MP is currently the top of Cray’s line;

it replaced the X-MP. The neural net work described above ran on a Y-MP and the other work for this paper ran

on an X-MP. The IBM ES/9000 is the new top of IBM’s line. The Cray 1S was Cray’s first widely used machine

and is still used as a reference. The IBM 3081 was the top of IBM’s mainframe line in the early 1980’s, and the

IBM PC with its math coprocesser, the Intel 8087, is well known.

TABLE A1

COMPUTER MFLOPS

Cray Y-MP 161.000

Cray X-MP 121.000

IBM ES/9000 Model 900 VF 60.000

Cray 1S 12.000

IBM 3081 K 2.100

IBM PC (w/ 8087) 0.012

Table A2 [from Varhol (1991)] shows the performance of some high performance desktop computers. The

IBM RS/6000 and the HP 9000 are both workstations and while their list price is slightly more than $10,000, lower

priced versions are due in early 1992. Further, Apple and IBM recently announced a joint agreement [see Pollack

(1991)], which in part says that a version of the RS/6000 CPU will be used in future Macintoshes. The Club

America Hawk III is one of the fastest Intel 486 computers (the 486 is the most recent addition to the line of

microprocessors that began with the Intel 8086 used in the IBM PC).

25

TABLE A2

COMPUTER MFLOPS

HP 9000 model 720 14.40

IBM RS/6000 model 320 7.29

Club America Hawk III 1.46

Finally, Table A3 [from Bell (1989)] shows some predictions for future computer performance. One can

see that floating point performance has risen recently and is posed to rise substantially in the near future. A fast 486

personal computer has more than half the performance of IBM’s premier mainframe from the early 1980’s (the

3081), while the RS/6000 and HP 9000 approach or surpass the first Cray in power. As a quick test of the RS/6000,

a million evaluations of the Judge function were run on it. This required 35 seconds of execution time, while the

X-MP took 21 seconds. Given the turnaround time on mainframes and supercomputers, this makes the RS/6000

extremely competitive. Further, it is just a harbinger of future machines.

TABLE A3

COMPUTER MFLOPS

Leading Microprocessor in 1992 20.0000

With Vector Processor 200.0000

26

APPENDIX B: SIMULATED ANNEALING ALGORITHM

SET initial parameters and values
set C (controls how fast V adjusts)
set X (starting values for model parameters)
set V (should cover the entire range of interest in X)
set � (convergence criteria)
set r (temperature reduction factor)T

set T (initial temperature)0

set N (# times � tolerance is achieved before termination)
�

set N (# times through function before V adjustment)S

set N (# times through N loop before T reduction)T S

CALCULATE f(X)
X = Xopt

f = fopt

DO UNTIL convergence
DO N timesT

DO N times S

DO i = 1, n
x ′ = x + r�v {r is uniform random number on [-1,1]} i i i

CALCULATE f′(X′)
IF f′ ≤ f THEN

apply Metropolis criteria
IF accepted: X = X′ & f = f′

END IF
IF f′ > f THEN

X = X′ & f = f′
END IF
IF f′ > f THEN opt

X = X′, f = f′, X = X′, & f = f′opt opt

END IF
END DO

END DO
ADJUST V such that half of all trials are accepted

END DO

IF change in f < � last N iterations & �f - f′� < � THENopt �

REPORT X , f & V opt opt

STOP
ELSE

X = X {start on current best optimum}opt

T = r �T {reduce T} T

END IF

CONTINUE

27

APPENDIX C: EXPERIENCE WITH THE GENETIC ALGORITHM

Genetic algorithms mimic natural selection for function optimization. The value of a function corresponds to

the fitness of an organism, while the parameters for the function correspond to the genes of that organism. The

genes that produce the fittest function values from one generation "mate" with each other and pass on their successful

traits to the next generation. Through a sequence of generations, the function should be optimized, much as an

organism is for its environment. As described by Goldberg (1989), from which this discussion follows, genetic

algorithms have been used successfully in many areas, including pipeline operation, structural optimization, job shop

scheduling and filter design. Most of the work, however, has been for optimizing non-continuous functions. It

should be noted while Goldberg was not the originator of the genetic algorithm, he and his workers developed it to

such a degree that he was a NSF Presidential Young Investigator in 1985.

Like simulated annealing, the genetic algorithm uses probabilistic decision rules and can escape local optima.

It also slowly optimizes the function, as opposed to "greedily" optimizing like conventional algorithms. However,

as described below, there are numerous differences between simulated annealing and the genetic algorithm.

In the genetic algorithm, the parameters of the function to be optimized are coded as a character string, most

commonly as binary digits. For instance, the integers from 8 to -7 can be coded with the binary string, b b b b , b1 2 3 4 i

= {0,1}, as b �2 + b �2 + b �2 + b �2 - 7. More useful codings clearly follow. One of the strengths of the genetic1 2 3 4
3 2 1 0

algorithm is that short substrings, called schemata, contain important information. With this coding example, if one

is maximizing the function f(x) = x on [8,-7] the substring b = 1 would be quite important. Although the analysis3
1

is rather involved, it turns out that for a population of size n, there are on the order of n schemata. Thus, many3

different characteristics of a population can be explored with a relatively small population.

The algorithm starts with a population of n strings, with the elements of each string assigned a random value.

The strings are then decoded and the function to be optimized is evaluated. The fittest strings (those that produce

the largest function value if maximizing the function) are selected and mated with other fit strings. There are many

actual selection procedures, including those with and without replacement, as well as stochastic and deterministic

methods. The one used below comes from Goldberg: a string’s probability for selection is weighted by f /�f , wherei i

f is the function value generated by the i string and �f is the sum of all function values in a generation. The mosti i
th

basic mating mechanism is simple crossover: two strings interchange after a randomly selected point. For instance,

with binary strings b b b b b b and B B B B B B , interchange after the 4 element yields b b b b B B and1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
th

B B B B b b . Mating and selection continues until all members are chosen for the next generation. There is also1 2 3 4 5 6

28

a small probability of mutation during mating. With a binary coded string, this is implemented as a nonzero

probability that a bit may switch. It turns out that mutation is not very important, and that too high a rate of

mutation actually hinders the optimization process by adding unnecessary noise to the system.

This process of creating new generations from old ones by selection, mating and mutation continues until some

termination criteria comes into play. Simple implementations may run interactively and the researcher terminates

the process when appropriate.

We obtained the Pascal code for the simple genetic algorithm outlined in Goldberg (1989) and modified it for

functions with vector inputs. A variation of the above coding scheme for integers was implemented with a user

defined floating point. A full 32 or 64 bits for each element was not implemented because the lower order bits

would be useless until the optimal higher order bits are determined. Let the vector of inputs be X = (x , ...,x). As1 n

the above discussion illustrates, with crossover mating key information should be in short strings, so the largest part

of all x ’s are coded next to each other, then the next largest are next to each other, and so on.i

To gain experience with the algorithm before using it on any of the test functions, a unimodal function of two

variables was optimized:

Running for 40 generations with a population of 30 in each generation and with � = 1, the simple genetic algorithm

experienced difficulty. In no generation did the average value of the function exceed .84 (the maximum value of

this function is 1.0). In fact, after quick initial improvement for the first few generations, the average value varied

between .70 and .84.

In this problem, the average function value in a generation is only slightly worse than the best function value,

while the worst is substantially worse (for instance, in the 10 generation the average was .73, the best .85 and theth

worst .21). Thus, with the usual selection rules, the genes that produce average values are almost as likely to be

selected as the best genes and little improvement occurs.

To surmount this problem, Goldberg recommends using a scaling function, which transforms a generation’s

function values into a distribution more likely to lead to better performance. In this case, a scaling function should

stretch the distance between the average and largest values so more superior genes are selected. Unfortunately, linear

scaling does not work with this population. We developed a third scaling function, based on a quadratic, that did

provide some improvement in average function value performance.

29

With � = .1, the simple genetic algorithm reaches a higher

without scaling because there is less variation between the average, minimum and maximum function values in each

generation. In part, this is because with � = .1 the function is much broader than with � = 1, so smaller values are

less likely. Thus, different scaling functions are needed for different functions. Further, as the � = 1 example

shows, it may be hard to find the appropriate scaling function.

Next, the Judge function was explored. This function is written in minimization form. In this form all values

are positive (recall that it is the sum of squares) and for values far from the minimum the function values are

substantial. However, the simple genetic algorithm maximizes functions and its selection rule requires positive

function values. With these considerations in mind and f as the function value, we maximized 10 - f. 6

The simple genetic algorithm experienced difficulty when nearing the optimum. The problem stems from the

selection rule, where the probability of selecting the i string is weighted by f /�f . Near the optimum, f isth
i i i

approximately 999,984 (recall the unadjusted minimum f is 16.0817). Thus, near the optimum, there is little relative

difference between the function values produced by good and bad strings. As a result, there is very little preference

given to good strings in selection for mating.

While this problem might seem specific to this function, it actually stems from the selection rule, which has

difficulty selecting between close function values. Thus, it will experience difficulty with any relatively flat surface.

At this point is became apparent that for continuous problems, the genetic algorithm is in need of further

development. With each function we optimized, we encountered difficulty with the algorithm and were forced to

modify it. While a very knowledgeable user might be able to correct these problems, the typical user of an

optimization algorithm should not be expected to modify the algorithm to suit the function. Perhaps with more work,

the genetic algorithm will become more usable by less experienced users for continuous function problems. It should

be noted that very few of the references given by Goldberg for continuous function optimization with the genetic

algorithm comes from the peer-reviewed sources. One particular refinement Goldberg is currently working on is with

so-called messy genetic algorithms. These algorithms more closely mimic natural selection and in particular, they

have the capability of finding isolated optima, something that proves troublesome for many algorithms.

30

TABLE 1

COMPARISON OF ALL ALGORITHMS ON JUDGE’S FUNCTION

Bounds on Starting Values: -100 < � < 100, i=1, 2i

Number of Runs: 100

Algorithm UMPOL UMCGF UMINF SA
(Simplex) (Conjugate (Quasi-Newton) (Simulated

Gradient) Annealing)

Solutionsa

@20.482 40 48 48 0

@16.082 60 52 52 100b

Mean Number of
Function Evaluations 152.54 c 31.25 845,241d

Execution Time (X-MP) 1.96 sec. .408 sec. .683 sec. 1632.8 sec.

a. Solutions are categorized by the minimum at which they terminate. The minimum with the value of
16.082 is the global minimum.

b. The algorithm twice reports, "The last global step failed to locate a lower point than the current X
value. The current X may be an approximate local minimizer and no more accuracy is possible or the
step tolerance may be too large where STEPTL = 3.696522E-10." All other terminations from all
algorithms are reported as normal.

c. UMCGF does not report the number of function evaluations.
d. This number is much smaller when less conservative values for the parameters for simulated annealing

were employed. See section IV.

31

TABLE 2

SIMULATED ANNEALING ON THE JUDGE FUNCTION: SAMPLE OUTPUT FROM
SELECTED TEMPERATURES

INITIAL PARAMETERS FOR THE ALGORITHM

Initial Parameters for the Objective Function: -13.722, -77.314
Resulting Function Value: 1.228806E+08

T : 5,000,000 �: 1.0E-8 N : 20 C : 2.0 (i = 1,2)0

r : 0.85 N : 4 N 100 V : 100.0 (i = 1,2)T �

S

T

i

i

Temperature 4,250,000.00

Current Optimal Parameters 5.8319, -2.9451

Current Optimal Function Value 523.7317281388

Downhill, Accepted Uphill, & Rejected Moves 1011, 1016, 1973

Stepsize 1118.4, 166.51

Temperature 18.37500

Current Optimal Parameters 0.87094, 1.2255

Current Optimal Function Value 16.08428345998

Downhill, Accepted Uphill, & Rejected Moves 981, 1001, 2018

Stepsize 1.6176, 1.7525

Temperature 0.7944483E-4

Current Optimal Parameters 0.86479, 1.2357

Current Optimal Function Value 16.08173013579

Downhill, Accepted Uphill, & Rejected Moves 992, 1009, 1999

Stepsize 0.50138E-2, 0.24662E-2

Temperature 0.2414776E-08

Current Optimal Parameters 0.86479, 1.2357

Current Optimal Function Value 16.08173013296

Downhill, Accepted Uphill, & Rejected Moves 1012, 994, 1994

Stepsize 0.23341E-4, 0.22194E-4

Return from Simulated Annealing Normal
Solution for Parameters 0.8644876261063, 1.235748322078
Optimal Function Value 16.08173013296
Final Stepsize 0.23341E-4, 0.22194E-4
Final Temperature 2.4147761862962E-9
Number of Accepted Moves 434,015
Number of Function Evaluations 868,001
Execution Time (X-MP) 16.0518 seconds

32

TABLE 3

CONVENTIONAL ALGORITHMS ON THE MODIFIED RATIONAL EXPECTATIONS MODEL

Bounds on Starting Values: -1 < � < 1, i = 1, . . . ,13i

Number of Runs: 100

ALGORITHM UMPOL UMCGF UMINF
(Simplex) (Conjugate Gradient) (Quasi-Newton)

Results by the Final Value of the Objective Function

Complex 0 0 0

Huge Covariance Matrix 10 12 12
Elements

Other 10 84 10
(Possible Solution)

Total Non-Floating Point 20 96 22
Error Returns

Floating Point Error 80 4 78
Returns

Minimum Value Found 6.487554836067 6.486982467843 6.486982467804 a

Program Reported Results (Covers All Non-Floating Point Errors)

Normal 20 57 18b c

Line Search Abandoned 39
(UMCGF)d

e

Failed to Find Lower 4
Value (UMINF)

g

Execution Time (X-MP) 2 min., 21 sec. 33 min., 25 sec. 14 min., 12 sec.

a. Of the 10 possible solutions, the final values of the objective function ranged from this to about 6.945.
 b. Of these 57 returns, 44 produce objective values less than 6.486983. The corresponding gradients are

approximately zero and the parameter values are nearly identical. The slight variation in objective values
is likely due to the termination criteria.

 c. Of these 18 returns, 12 are due to the huge elements in the covariance matrix. The other 6 had identical
objective values, near zero gradients and approximately equal parameter values.

 d. The algorithm reports, "The line search of an integration was abandoned. An error in the gradient may be
the cause."

e. Only one value was near the presumed minimum; the rest were some distance away.
f. The algorithm reports, "The last global step failed to locate a lower point than the current X value. The

current X may be an approximate local minimizer and no more accuracy is possible or the step tolerance
may be too large where STEPTL = 3.696522E-10."

g. The final values of the parameters, objective values and gradient was indistinguishable from the "good"
normal results.

33

TABLE 4

SIMULATED ANNEALING ON THE MODIFIED RATIONAL EXPECTATIONS MODEL

T : 10.0 N : 200

r : 0.85 N : 20T

�: 1.0E-11 C : 2.0 (i = 1, 13)
N : 4 V : 100.0 (I = 1, 13)

�

S

T

i

i

Final Step Lengths

0.15678E-07 0.97505E-06 0.76930E-05 0.97651E-05 0.15193E-05

0.44804E-05 0.33611E-05 0.10882E-05 0.31521E-05 0.15193E-05

0.11529E-05 0.21567E-05 0.22594E-05

Final Temperature: 1.03058E-12
Number of Accepted Moves: 477,446

Number of Function Evaluations: 956,801
Execution Time (X-MP): 40 minutes, 18 seconds

34

TABLE 5

CONVENTIONAL ALGORITHMS ON THE TRANSLOG COST FRONTIER MODEL

Bounds on Starting Values: -20 < � < 20, i = 1, . . . ,62i

Number of Runs: 100

ALGORITHM UMPOL UMCGF UMINF
(Simplex) (Conjugate Gradient) (Quasi-Newton)

Total Non-Floating Point 100 100 49
Error Returns

Floating Point Error 0 0 51
Returns

Minimum Value Found
4363.817614080 1015.176621710 -1581017798364 a b c

Program Reported Results (Covers All Non-Floating Point Errors)

Normal 14 0 7d

Too Many Function
Evaluations 86 6e f

Line Search Abandoned
(UMCGF)g

94

Failed to Find Lower 42
Value (UMINF)h

Execution Time (X-MP) 85 min., 52 sec. 76 min., 58 sec. 26 min., 1 sec.

a. This value occurred with an iteration that terminated because the number of function evaluations exceeded
25,000. The execution time was approximately 58 seconds.

b. Most gradients were small, but several were greater than 100 in absolute value. The routine terminated
because it exceeded 5,000 function evaluations.

c. This value is an anomaly since many parameter values were greater than 1000 in absolute value. Evidently,
away from "reasonable" parameter values, the function becomes nonsensical. The next best value was
4019.03995809.

d. None of these values contained a zero gradient. Typically, the gradient elements were either zero or ranged
from 10E+8 to 10E+22.

e. As described in footnote a, the number of function evaluations was limited to 25,000.
f. As described in footnote b, the number of function evaluations was limited to 5,000. These 6 iterations took

97.1% of the execution time for this run. All resulting objective values ranged from 1015.17 to 1308.62.
The gradient values were again quite large.

g. The algorithm reports, "The line search of an integration was abandoned. An error in the gradient may be
the cause."

h. The algorithm reports, "The last global step failed to locate a lower point than the current X value. The
current X may be an approximate local minimizer and no more accuracy is possible or the step tolerance
may be too large where STEPTL = 3.696522E-10." Typical gradient values were approximately 1.0E+8.

35

TABLE 6

SIMULATED ANNEALING ON THE TRANSLOG COST FRONTIER MODEL

T : 500.0 N : 200

r : 0.85 N : 10T

�: 1.0E-10 C : 2.0 (i = 1, 62)
N : 4 V : 100.0 (I = 1, 62)

�

S

T

i

i

Final Step Length

0.10593E-12 0.27917E-14 0.10735E-13 0.23835E-14 0.34958E-14
0.24298E-14 0.27545E-13 0.46932E-14 0.68794E-14 0.11937E-13
0.43830E-14 0.13357E-13 0.17099E-14 0.25643E-14 0.29042E-14
0.57918E-15 0.17286E-14 0.31509E-14 0.41301E-14 0.75095E-15
0.14656E-14 0.10222E-14 0.11749E-14 0.20317E-14 0.15261E-14
0.96374E-15 0.66411E-15 0.11723E-14 0.62383E-13 0.20851E-14
0.59387E-13 0.60386E-14 0.42017E-15 0.25412E-14 0.19055E-14
0.21703E-14 0.33987E-13 0.41447E-14 0.48380E-13 0.15540E-13
0.15090E-14 0.10994E-14 0.59865E-14 0.39168E-14 0.16177E-13
0.19995E-14 0.40851E-14 0.24939E-14 0.24520E-14 0.21529E-14
0.57125E-15 0.16523E-14 0.16464E-14 0.18056E-14 0.11392E-14
0.22389E-07 0.32855E-08 0.93383E-15 0.11984E-15 0.86365E-13

20.564 13.396

Final Temperature: 1.443007875941E-12
Number of Accepted Moves: 1,253,777

Number of Function Evaluations: 2,554,401
Execution Time (X-MP): 53 minutes, 20 seconds

36

TABLE 7

CONVENTIONAL ALGORITHMS ON THE NEURAL NET

Bounds on Starting Values: -600 < � < 600, i = 1, . . . ,35i

Number of Runs: 100

ALGORITHM UMPOL UMCGF UMINF
(Simplex) (Conjugate Gradient) (Quasi-Newton)

Total Non-Floating Point 100 100 95
Error Returns

Floating Point Error 0 0 5
Returns

Minimum Value Found
229.7440 281.0888 228.2120 a b c

Program Reported Results (Covers All Non-Floating Point Errors)

Normal 0 0 58

Too Many Function
Evaluations 100 0 2d e

Line Search Abandoned
(UMCGF)f

100

Failed to Find Lower 35
Value (UMINF)g

Execution Time (Y-MP) 55 min., 17 sec. 30 min., 26 sec. 76 min., 8 sec.

a. This value occurred with an iteration that terminated because the number of function evaluations exceeded
20,000.

b. Most elements of the gradient were small and the largest element was .245 in absolute value. c.The largest
element of the gradient was 12.61 in absolute value. The routine terminated normally.

d. As described in footnote a, the number of function evaluations was limited to 20,000.
e. The maximum number of function evaluations was 10,000. Even though more function
evaluations could have likely been used, these iterations were not promising since they had
function values of 381.993 and 522.54.
f. Each time, the algorithm reported, "The line search of an integration was abandoned. An error in the

gradient may be the cause."
g. The algorithm reports, "The last global step failed to locate a lower point than the current X value. The

current X may be an approximate local minimizer and no more accuracy is possible or the step tolerance
may be too large where STEPTL = 1.000000E-14."

37

TABLE 8

SIMULATED ANNEALING ON THE NEURAL NET

T : 3.5E8 N : 200

r : 0.85 N : 20T

�: 1.0E-10 C : 2.0 (i = 1, 35)
N : 4 V : 100.0 (I = 1, 35)

�

S

T

i

i

� solution vectors (one vector per row)j

-5.13 .42 1.06 10.98 553.7 246.2
-15.08 -3.90 -7.57 -7.96 504.1 -250.1

 -8.30E-2 2.43E-3 2.06E-4 3.23E-2 4.98 -0.10
 5.85 4.20 -2.99 1.76 406.19 -433.3
20.21 .32 -5.67 -13.86 515.31 551.7

� solution vector

.34 .29 2.05 -1.13 -1.13

Final Function Value: 22.845
Final Temperature: 3.5098E-4

Number of Accepted Moves: 1,671,870
Number of Function Evaluations: 2,380,002

Execution Time (Y-MP): 42 minutes, 51 seconds

38

REFERENCES

Aluffi-Pentini, Filippo, Valerio Parisi and Francesco Zirilli. "A Global Optimization Algorithm Using Stochastic
Differential Equations." ACM Transactions on Mathematical Software 14 (1988): 344-65.

Baum, Eric B. "Neural Nets for Economists." The Economy as an Evolving Complex System. Philip W. Anderson,
Kenneth J. Arrow and David Pines, eds. New York: Addison-Wesley, 1988.

Bell, Gordon. "The Future of High Performance Computers in Science and Engineering." Communications of the
ACM 32 (1989): 1091-101.

Bohachevsky, Ihor O., Mark E. Johnson and Myron L. Stein. "Generalized Simulated Annealing for Function
Optimization." Technometrics 28 (1986): 209-17.

Carnevali, P., L. Coletti and S. Patarnello. "Image Processing by Simulated Annealing." IBM Journal of Research
and Development 29 (1985) 569-79.

Corana, A., M. Marchesi, C. Martini and S. Ridella. "Minimizing Multimodal Functions of Continuous Variables
with the ’Simulated Annealing’ Algorithm." ACM Transactions on Mathematical Software 13 (1987):
262-80.

Cramer, J. S. Econometric Applications of Maximum Likelihood Methods. New York: Cambridge University Press,
1986.

Dennis, J. E. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

Derwent, Dick. "A Better Way to Control Pollution." Nature 331 (1988): 575-78.

Dongarra, Jack J. "Performance of Various Computers Using Standard Linear Equations Software." Computer
Science Department, Univeristy of Tenessee, Knoxville, TN 37996. September 5, 1991.

Drexl, A. "A Simulated Annealing Approach to the Multiconstraint Zero-One Knapsack Problem." Computing 40
(1988): 1-8.

Finch, Stephen J., Nancy R. Mendell and Henry C. Thode, Jr. "Probabilistic Measures of Adequacy of a Numerical
Search for a Global Maximum." Journal of the American Statistical Association 84 (1989): 1020-3.

Ferrier, Gary D. and C.A. Knox Lovell. "Measuring Cost Efficiency in Banking; Econometric and Linear
Programming Evidence." Journal of Econometrics 46 (1990): 229-245.

Gallant, A. Ronald and Halbert White. "On Learning the Derivatives of an Unknown Mapping with Multilayer
Feedforward Networks." Neural Networks 4, forthcoming.

Goldberg, David E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading MA:
Addison-Wesley, 1989.

Judge, George G., W. E. Griffiths, R. Carter Hill, Helmut Lutkepohl and Tsoung-Chao Lee. The Theory and Practice
of Econometrics, 2nd ed. New York: John Wiley and Sons, 1985.

Kan, A. H. G. Rinnooy and G. T. Timmer. "Stochastic Global Optimization Methods Part II: Multi Level Methods."
Mathematical Programming. 39 (1987): 57-78.

Kendall, M.G. A Course in the Geometry of n Dimensions. New York: Hafner (1961).

Kendall, Maurice and Alan Stuart. The Advanced Theory of Statistics. 4th ed. New York: Macmillan, 1978.

39

Kirkpatrick, S., C. D. Gelatt Jr. and M. P. Vecchi. "Optimization by Simulated Annealing." Science 220 (1983):
671-80.

Kuan, Chung-Ming and Halbert White. "Artifical Neural Networks: An Econometric Perspective." Working Paper.
Economics Department, University of Illinois, Urbana-Champaign, IL.

Pollack, Andrew. "I.B.M. Now Apple’s Main Ally." New York Times (national edition). October 3, 1991. C1+.

Pronzato, Luc, Eric Walter, Alain Venot and Jean-Francois Lebruchec. "A General-Purpose Optimizer:
Implementation and Applications." Mathematics and Computers in Simulation 24 (1984): 412-22.

Press, William H., Brian Flannery, Saul A. Teukolsky and William T. Vetterling. Numerical Recipes, The Art of
Scientific Computing. New York: Cambridge University Press, 1986.

Quandt, Richard E., "Computational Problems and Methods." Handbook of Econometrics. Volume 1. Griliches and
M. D. Intriligator, eds. New York: North-Holland, 1983.

Renpu, G. E. "A Filled Function Method for Finding a Global Minimizer of a Function of Several Variables,"
Mathematical Programming. 46 (1990): 191-204.

Salemi, Michael K. "Solution and Estimation of Linear Rational Expectations Models." Journal of Econometrics 31
(1986): 41-66.

Telly, H., Th. M. Liebling and A. Mocellin. "Reconstruction of Polycrystalline Structures: a New Application of
Combinatorial Optimization." Computing 38 (1987): 1-11.

Tunnicliffe-Wilson, G. "Estimation of Parameters in Multiple Time Series Models," Journal of the Royal Statistical
Society, Series B, 20 (1973): 76-85.

Vanderbilt, David and Seven G. Louie. "A Monte Carlo Simulated Annealing Approach to Optimization over
Continuous Variables." Journal of Computational Physics 56 (1984): 259-71.

Varhol, Peter D. "Fast 486 Performance and Compatible Processors." Personal Workstation 3 (June 1991): 67-69.

Wasserman, Philip D. and Tom Schwartz. "Neural Networks, Part 2: What Are They and Why Is Everybody So
Interested in Them Now?" IEEE Expert Spring 1988: 10-15.

Wong, D. F., H. W. Leong and C. L. Liu. Simulated Annealing for VLSI Design. Boston: Kluwer Academic
Publishers, 1988.

Woo, Wing T. "The Monetary Approach to Exchange Rate Determination Under Rational Expectations, The
Dollar-Deutschmark Rate." Journal of International Economics 18 (1985): 1-16.

